EECS205000: Linear Algebra College of Electrical Engineering and Computer Science National Tsing Hua University Spring 2019

Homework #2 Coverage: Chapter 1–5 Due date: 3 May, 2019

Instructor: Chong-Yung Chi

TAs: Amin Jalili and Yi-Wei Li

Notice:

- 1. Please hand in your answer sheets by yourself to TAs in the class time or to the WCSP Lab., EECS building, R706, before 23:59 of the due date. No late homework will be accepted.
- 2. This homework includes 9 problems with 100 points plus 5 bonus points.
- 3. Please justify your answers with clear, logical and solid reasoning or proofs.
- 4. You need to **print** the problem set and answer the problems in the **blank boxes** after each problem or sub-problm. We provided enough space for every problem. However, if you need more space, you can print it in one-side manner (each page in one side of an A4), and use the back side as an additional space.
- 5. Please do the homework independently by yourself. However, you may discuss with someone else but copyied homework is not allowed. This will show your respect toward the academic integrity.
- 6. Write your name, student ID, email and department on the begining of your ansewr sheets.
- 7. Your legible handwriting is fine. However, you are very welcome to use text formatting packages for writing your answers.

Name	
Student ID	
Department	
Email Address	

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

Problem 2. (5 points) Let $\mathbf{b}_1 = [1, 2, 2, 4]^T$, $\mathbf{b}_2 = [-2, 0, -4, 0]^T$, and $\mathbf{b}_3 = [-1, 1, 2, 0]^T$, and let S be the span of these vectors. Apply the Gram-Schmidt process to $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ to obtain an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$ for S.

Problem 3. (20 points) Let A be an $m \times n$ matrix.

- (a) (5 points) Show that $N(\mathbf{A}^T \mathbf{A}) = N(\mathbf{A})$.
- (b) (5 points) Show that $rank(\mathbf{A}^T \mathbf{A}) = rank(\mathbf{A})$. (Hint: you may use the rank-nullity theorem, i.e. $dim(N(\mathbf{A})) + rank(\mathbf{A}) = n$ for any $m \times n$ matrix \mathbf{A} .)
- (c) (10 points) If \mathbf{A} is a 4 × 3 matrix and $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Let $\tilde{\mathbf{x}}$ be a least-squares solution that minimizes

 $\|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2$ for $\mathbf{b} = [0, 2, 1, -1]^T$. Find $\mathbf{p} = \mathbf{A}\tilde{\mathbf{x}}$ and give its physical meaning.

Problem 4. (10 points) Assume that the matrix set **M** consists of 2×2 real matrices to form a vector space over $\mathbb{R}^{2 \times 2}$.

- (a) (5 points) Show that the subspace W consisting of symmetric matrices is a subspace of \mathbf{M} .
- (b) (5 points) Find a basis for W and determine the dimension of W.

Problem 6. (10 points) Let $y = r + sx^2$, where $r, s \in \mathbb{R}$, provide the least squares fit to the points $(x_1, y_1) = (1, 1), (x_2, y_2) = (2, 4)$ and $(x_3, y_3) = (4, 8)$.

- (a) (5 points) Find r and s.
- (b) (5 points) Find values of y_1 , y_2 and y_3 at $x_1 = 1$, $x_2 = 2$ and $x_3 = 4$, respectively, such that the best fitting curve is y = 0.

Problem 7. (20 points) Let $\mathbf{A} \in \mathbb{R}^{3 \times 5}$. Assume that we performed row operations on \mathbf{A} to convert it to *rref* form, but now we do something different - instead of getting the usual $\mathbf{R} = [\mathbf{I} \quad \mathbf{F}]$, we now reduce it to a matrix in the form of $\tilde{\mathbf{A}} = [\mathbf{F} \quad \mathbf{I}]$. And the row operation of \mathbf{A} was given as follows:

$$\mathbf{A} \xrightarrow{rref} \begin{bmatrix} 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 0 & 1 & 0 \\ 6 & 7 & 0 & 0 & 1 \end{bmatrix} = \tilde{\mathbf{A}}$$

- (a) (10 points) Find a basis for $N(\mathbf{A})$.
- (b) (10 points) Find a matrix \mathbf{M} so that applying the same row elimination matrix associated with $\tilde{\mathbf{A}}$ to $\mathbf{A}\mathbf{M}$ can get the usual *rref* form.

$$\mathbf{AM} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & 4 & 5 \\ 0 & 0 & 1 & 6 & 7 \end{bmatrix}$$

Problem 8. (10 points) Answer the following questions.

_

(a) (5 points) Let
$$\mathbf{A} = \begin{bmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{bmatrix}$$
. Find $det(\mathbf{A})$ in terms of x, y, z .

~ -

(b) (5 points) Let matrix $\mathbf{A} = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3]$, where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ are vectors in \mathbb{R}^3 . If $4\mathbf{a}_1 - 3\mathbf{a}_2 + 2\mathbf{a}_3 = \mathbf{0}$, find $det(\mathbf{A})$.

Problem 9. (10 points) Let C be the cofactor matrix of A, and $\mathbf{C}^T = \begin{bmatrix} 2 & 1 & 0 \\ 4 & 3 & 2 \\ -2 & -1 & 2 \end{bmatrix}$. Find the $det(\mathbf{A})$ and A. (Hint: you may use $det(c\mathbf{A}) = c^n det(\mathbf{A})$) for any constant c and $n \times n$ matrix \mathbf{A}).

Problem 10. (+5 bonus points) For maximizing your knowledge on Linear Algebra, please provide comments and suggestions of how to improve the teaching quality of this course.